On Parallel Implementations of Dynamic

Overset Grid Methods

Andrew M. Wissink
Research Scientist, MCAT Inc.

Robert L. Meakin
Research Scientist, U.S. Army Aeroflightdynamics Directorate, AMCOM

NASA Ames Research Center, Mailstop 258-1
Moffett Field, CA 94035-1000
[wissink,meakin] @nas.nasa.gov

Abstract

This paper explores the parallel performance of structured overset CFD computations for multi-
component bodies in which there is relative motion between component parts. The two processes
that dominate the cost of such problems are the flow solution on each component and the inter-
grid connectivity solution. A two-part static-dynamic load balancing scheme is proposed in
which the static part balances the load for the flow solution and the dynamic part re-balances, if
necessary, the load for the connectivity solution. This scheme is coupled with existing parallel
implementations of the OVERFLOW flow solver and DCF3D connectivity routine and used for
unsteady calculations about aerodynamic bodies on the IBM SP2 and IBM SP multi-processors.
This paper also describes the parallel implementation of a new solution-adaption scheme based on
structured Cartesian overset grids.

1.0 Introduction

Unsteady prediction of viscous flows with relative movement between component parts
remains an extremely challenging problem facing Computational Fluid Dynamics (CFD)
researchers today. While unstructured-grid methods have shown impressive results for inviscid
moving-grid simulations [1], dynamic overset structured-grid schemes based on the “Chimera”
[2] approach have demonstrated the most success for viscous moving-grid problems that experi-
ence arbitrary motion. There are a number of difficult problems for which dynamic overset grid
schemes have been exclusively applied, including space shuttle booster separation [3], missile
store separation [4], and helicopters with moving rotor blades [5]. Navier-Stokes calculations
with these methods require high computational resources that overwhelm vector-based machines
like the Cray C90. Large multi-processor such as the IBM SP and Cray T3E offer the potential
for dramatic increases in available computing power but scalable implementations of existing
applications software must be devised if the power of these machines is to be fully realized.

A number of researchers have investigated the parallel performance of overlapping grid
schemes for steady-state CFD calculations [6-8] but only the works of Weeratunga and Barszcz
[9,10] directly address their parallel performance when applied to moving-grid problems. In
addition to the flow calculation, moving-grid applications require that interpolation coefficients

1
1723

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

between the various overlapping grid components be updated at each timestep. The connectivity
solution can constitute a significant fraction (10-50%) of the total computational work and can be
difficult to parallelize efficiently. A partitioning strategy that gives optimal parallel performance
in the flow solution does not necessarily give optimal performance in the connectivity solution,
and vice-versa. Therefore, alternative parallel implementation approaches must be considered to
attain scalable performance on large numbers of processors for moving-grid problems.

Although Weeratunga and Barszcz introduced novel parallel implementations of both the flow
and connectivity solutions, they did not directly address optimal load balancing techniques for
parallel efficiency of the connectivity solution. This paper seeks to extend their work by propos-
ing a load balancing approach to improve the parallel efficiency for moving-grid applications.
The paper is divided into six sections. The second section gives details about the parallel imple-
mentations for the flow solver and connectivity routine. The third section introduces a static and a
dynamic load balancing approach. Section four presents results of the parallel performance on
the IBM SP?2 and IBM SP for unsteady Navier-Stokes calculations about three different aerody-
namic configurations. Section five discusses a new approach for overset grid problems which will
be followed in future work. Finally, some concluding remarks are given in section SiX.

2.0 Dynamic Overset Grid Scheme

The overset scheme used in this work utilizes a “Chimera” {2] style of domain decomposition
in which the overall flowfield domain is divided into a system of grids which overlap one another
by one or more grid cells. “Holes” are cut in grids which intersect solid surfaces and data is inter-
polated between the subdomains. The solution proceeds by updating, at each step, the boundary
conditions on each grid with the interpolated data. This approach offers many advantages for
CFD calculations about geometrically complex shapes because the complex domain can be bro-
ken into groups of relatively simple overlapping body-fitted grids and topologically simple back-
ground grids (Fig. 1).

Further, unsteady moving-grid calculations can be performed without stretching or distorting
the respective grid systems. The structured system of grids allows use of the many efficient
implicit solution techniques developed for structured grids, which generally do not suffer from the
high memory and poor vectorized or RISC-based performance typically associated with unstruc-
tured grid solvers. Lastly, the domain decomposition nature of the approach offers a high degree
of coarse-grained parallelism that can be exploited on distributed computing environments.

The need to interpolate between the various overlapping grids necessitates use of a connectiv-
ity routine. The role of the connectivity routine is to perform searches for the points that lie in the
region of overlap to determine the correct interpolation coefficients from the background grid.
Static-grid simulations perform the connectivity solution as a preprocessor step and use the infor-
mation throughout the flow calculation. Moving-grid simulations, on the other hand, require a
new connectivity solution to be performed at each timestep because the connectivity solution
changes as the grids move with respect to one another.

2 ',5{9?;@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 |IEEE SOCIETY

il
i

TRARAA

\
i

LY

HHEHT

W

Figure 1. Overset grid system for V-22 tiltrotor

Three main pieces of software are used in the parallel dynamic overset scheme explored in
this work. The flow solution on overlapping grid components is performed using NASAs struc-
tured-grid flow solver OVERFLOW by Buning [11]. Grid motion is determined by a six degree of
freedom model (SIXDOF) [4], and connectivity between the overlapping grids at each timestep is
performed using the code DCF3D of Meakin [12]. The parallel implementations of OVERFLOW
and DCE3D previously introduced by Weeratunga [9] and Barszcz [10], respectively, are used.
The load balancing scheme proposed here is incorporated and the entire package is bundled into a

single code called OVERFLOW-D1.

An unsteady flow calculation using OVERFLOW-D1 involves three main steps carried out at
each timestep: 1) solve the nonlinear fluid flow equations (Euler/Navier-Stokes) subject to flow
and intergrid boundary conditions, 2) move grid components associated with moving bodies sub-
ject to applied and aerodynamic loads (or according to a prescribed path), 3) re-establish domain
connectivity for the system of overlapping grids. Each step of the solution proceeds separately
and barriers are put in place to synchronize each of the solution modules.

2.1 OVERFLOW Parallel Implementation

The parallel implementation approach of OVERFLOW uses both coarse-grained parallelism
between grids and fine-grained parallelism within grids. Processor groups are assigned to each
grid component and each processor executes its own version of the code for the grid or portion of
the grid assigned to it (Fig. 2). The spatial accuracy is second order and temporal accuracy is first
order. The solution is marched in time using a diagonalized approximate factorization scheme.
Implicitness is maintained across the subdomains on each component so the solution convergence
characteristics remain unchanged with different numbers of processors. More details about the
flow solver and parallel implementation are available in Refs. [8,9]. The approach is designed for

’ @

Proceedings of the ACM/IEEE SC97 Conference (SC'97) CSMPUTER
SOCIETY

0-89791-985-8/97 $ 17.00 © 1997 |IEEE

execution on a Multiple Instruction Multiple Data (MIMD) distributed-memory parallel com-
puter. Communication between the processor subdomains is performed with MPI [13] subroutine
calls.

2D Oscillating Airfoil

3 Grids/9 processors

Figure 2. Grid-based parallel implementation approach for OVERFLOW

2.2 DCF3D Parallel Implementation

The parallel approach for the donor search routine in DCF3D was originally devised by
Barszcz [10]. The user provides input for each grid and a list of component grids that should be
searched to find donor points for each of the inter-grid boundary points (IGBPs) on the processor.
The grids are listed in hierarchical manner with the corresponding grids searched in the order
they are listed. The donor search procedure performed with in DCF3D proceeds as follows at
each timestep:

eEach processor consults the search list to determine the component grid from which to
request a search. It then checks the bounding boxes of each of the processors assigned
to that grid. This can be determined locally since the bounding box information is
broadcast globally at the beginning of the solution.

*Based on the bounding-box information, the processor determines which processor to
send its search request to. A list of inter-grid boundary points (IGBPs) is sent to that
processor which performs the search for the donor locations on its grid.

*Once all locations have been searched, the information is sent back to the calling proces-
sor and the IGBPs which have donors (i.e. those for which the search was successful) are

tagged.
4 Vﬁ@ﬁ@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

AR ARY

%77 -i,
7
Processor 1 % Processor 2

TeEI T EE

(2) send List
L —

(3) Form IGBP list Perform (—
Search %

-———
Send back
donor locations

Figure 3. DCF3D parallel implementation approach - distributed donor search procedure

If all IGBPs have not received a donor, the procedure is repeated for the next grid in the hierarchy.
If the search happens to hit a processor boundary, the search request is forwarded to the neighbor-
ing processor on the grid and the search is continued. This process is illustrated in Fig. 3.

The messages requesting searches are all sent asynchronously so that processors can be per-
forming searches simultaneously. For example, after processor 1 sends a list of its IGBPs for a
non-local search to processor 2, it checks if any other processors have requested searches of it. If
any have, processor 1 performs the search and returns the result to the calling processor before
checking if processor 2 has returned the results of its search request.

The most computationally intensive part of the connectivity solution algorithm above is per-
forming the donor search requests (step 3). There is nearly always a load imbalance in this step
because certain processors hold data where many searches take place while others hold data
where few searches are required.

In performing the connectivity solution at the first timestep, nothing is known about the possi-
ble donor location and the solution must be performed from scratch. In subsequent timesteps,
however, the known donor locations from the previous timestep can be used as a starting point for
the searches at the new timestep. This idea, referred to as “nth-level-restart”, was proposed by
Barszcz [10] and was found to yield a considerable reduction in the time spent in the connectivity
solution. The maximum timestep used in the problem is most often governed by stability condi-
tions of the flow solver and this timestep is generally small enough that the donor cell locations do
not move by more than one cell of the receiving grid per timestep. It is for this reason that the nth-
level-restart idea tends to be quite effective at reducing the search costs.

3.0 Load Balance

Poor load balance is the primary source of parallel inefficiency using the parallel moving-
body overset scheme. The two dominant computational costs in the calculation are the flow solu-

5 FFW@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

tion and domain connectivity solution and the efficiency is best if both are load balanced. Unfor-
tunately, devising a scheme that can effectively load balance both the flow solution and
connectivity solution is difficult.

The load balance of the flow solution is proportional to the volume of gridpoints on each pro-
cessor. While some variation arises from differences in the computational work per gridpoint
(e.g. some grids may be viscous while others are inviscid, turbulence model may be employed on
some grids but not others, etc.), the differences are not substantial for the cases presented in this
work.

A static load balancing scheme is applied initially which seeks to distribute the volume of
gridpoints in the subdomains as evenly as possible. The routine takes as input the number of
grids, their indices, and the total number of processors to be applied to the problem and deter-
mines the number of processors that should be applied to each grid to distribute the gridpoints as
evenly as possible. The algorithm used to achieve this result is as follows:

Algorithm 1: Static Load Balance Routine
g(n) = number of gridpoints in component grid n
G = total number of gridpoints from all grids G = %' g(n)

np(r) = number of processors applied to component n
NP = total number of processors

t,AT = tolerance factor, increment
1. Initialize: Compute g(#), G; set & = % and T = 0; set At to small value (~0.1)

2.DOuntil > np(n) = NP

o np{n) = m?‘i g—gﬁg , with condition that np{n} 2 i
L 4
o7 = T+AT
o = ¢ {1 +7)
END DO

In Algorithm 1, € is initially the most efficient load balance possible, equal to the total number
of gridpoints over the total number of processors. Then, the number of subdomains np(n) is com-
puted for grid n by dividing the number of gridpoints g(n) by €. The g(n) value is inclusive of the
points which are eventually blanked out in the connectivity solution. Unless the grids are per-
fectly divisible by &, the resulting total number of subdomains is less than the number of proces-
sors. Thus, a tolerance factor T is incremented by At and the process is repeated until the number
of subdomains equals the number of processors. If =0, the problem is perfectly load balanced.
Increasingly greater values of T indicates higher degrees of load imbalance. Thus, the tolerance
factor is a measure of the degree of load imbalance.

Because Algorithm 1 uses integer arithmetic, there arises the possibility of having infinite
solutions with certain grid and processor partition choices, for which the algorithm will not con-
verge. For example, if three processors are applied to two equally-sized grids (i.e. same g(n)), the
algorithm cannot decide which grid should receive two processors and which should receive one

6

HEIE
Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

and will continue iterating. A special condition has been put in place for these cases; If the
method proceeds for many iterations and does not converge, the value of the grid index n is added
to g(n) and the method is repeated. Since n is generally very small relative to g(n), this effectively
adds a small perturbation to the system and the method will subsequently converge.

Once the number of processors applied to each grid is determined, the routine divides the
grids into subdomains with the smallest surface area based on the index space of the grid. The
routine forms subdomains based on the prime factors of np(n). For example, if np(n)=12, the
prime factors are 3, 2, and 2. It divides the largest dimension in the domain by 3, then subdivides
the largest dimension in each subdomain by 2, and further subdivides the largest dimension in
each sub-subdomain by 2. In this way, the algorithm forms subdomains which have index spaces
that are as close to cubic as possible, thereby minimizing the surface area in order to minimize
communication between the subdomains (Fig. 4).

Index Space of Grids Grids Divided into
Subdomains

—

Figure 4. Static load balance routine

The static load balancing scheme is effective at load balancing the flow solution but makes no
effort to load balance the connectivity solution. In some cases, namely those which have a large
number of inter-grid boundary points relative to the number of gridpoints, the connectivity solu-
tion can represent a significant proportion of the computational cost. It is therefore desirable to
have in place a means of load balancing the connectivity solution for use with these cases.

The primary computational costs in the connectivity solution are incurred in facilitating the
donor search requests sent by other processors (step 3 in Fig. 3). The donor search costs are pro-
portional to the number of non-local IGBPs, located on other processors, sent to the local proces-
sor in the search request. Thus, an efficient load balancing strategy for the connectivity solution
should seek to equally distribute the number of non-local IGBPs sent to each processor.

7 W‘Vf?@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

A dynamic scheme is proposed for load balancing the connectivity solution. The necessity of
a dynamic scheme is twofold. First, determining a prediction locally of the number of IGBPs that
will be sent by other processors is difficult to do apriori because it requires all non-local data. Itis
generally easier to begin the calculation and determine the degree of imbalance after a few steps
of the solution than it is to predict the imbalance before the start of the solution. Second, the num-
ber of search requests will change throughout a moving-grid calculation as grids pass through
each other so a dynamic scheme will adapt the load balance as the problem changes. The pro-
posed dynamic scheme is given in Algorithm 2.

Algorithm 2: Dynamic Load Balance Scheme

/., = user specified load balance factor

1. Begin solution - apply static load balance routine
2. Check solution after specified number of timesteps:

eDetermine /(p) = #IGBPs received on processor p

. I{p)
eCompute / = Z) (global average over all processors)
Np '8 g

eCompute f{p} = i{%

for each processor. If f(p)> f,set npin) = np(n} + 1,

where 7 is the grid component to which processor p is assigned.

eRerun static load balance routine with above #p(; condition enforced for grid n.

The role of the above scheme is to reassign the processor distribution so that a better degree of
load balance will evolve in the connectivity solution. The drawback is, of course, that the number
of subdomains assigned to each component grid will change according to the connectivity solu-
tion needs so that it will not optimally load balance the flow solution. The goal of the routine is to
achieve a reasonable tradeoff for those problems in which the connectivity solution is a severe
bottleneck.

The user-specified value of f,, acts as a weight to control the desired degree of load balance in
either the flow solution or connectivity solution. If f = oo, the dynamic scheme retains the static

partition regardless of the degree of load imbalance in the connectivity solution and the load bal-
ance will be optimized for the flow solution only. If f,= 1, the dynamic routine will continue

trying to optimally load balance the connectivity solution. It should be noted, however, that the
dynamic routine will never completely load balance the connectivity solution because there is no
mechanism in place to subdivide the grids in such a way that the number of IGBPs searched is
distributed evenly across the grid. We assume that, by continuing to apply more processors to the
grid and performing the grid subdivision in such a way as to achieve the smallest surface area in
each subdomain, the number of IGBPs searched will be distributed more-or-less evenly, although
this is not always the case. In practice, the “best” value of f,, is problem dependent.

8 T‘?‘ﬁi@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

4.0 Results

The parallel moving-body overset grid scheme has been tested for three baseline test problems
on the IBM SP2 at NASA Ames Research Center, and the IBM SP at the U.S. Army Corps of
Engineers Waterways Experiment Station (CEWES). Both are distributed memory machines with
a switch-based interconnect network. The SP2 is a slightly older model, using IBM’s RISC-based
RS/6000 POWER?2 chips (66.7 MHz clock rate) at each node with a peak interconnect speed of 40
MB/sec. The SP uses the POWER2 Super Chip (P2SC, 135 MHz clock rate) at each node with a
maximum interconnect speed of 110 MB/sec.

The test problems include 1) a two-dimensional oscillating airfoil, 2) a descending delta-wing
configuration, and 3) a finned-store separation from a wing/pylon configuration. The following
subsections provide details on the measured performance for these cases.

4.1 2D Oscillating Airfoil

This case computes the viscous flowfield about a NACA 0012 airfoil with freestream Mach

number M =0.8 and,Reynolds number Re=10° whose angle of attack goes through the following
sinusoidal motion:

o) = o, sinwt

where o, = 5° and @ = 1t/2. The three grids used to resolve the flowfield, which are shown

in Fig. 2, are a near-field grid that defines the airfoil and extends to a distance of about one chord,
an intermediate-field circular grid that extends to distance of about three chords from the airfoil,
and a square Cartesian background grid that extends seven chords from the airfoil. The three
grids have roughly equal numbers of gridpoints with a composite total of 64K gridpoints. The

ratio of the number of IGBPs to gridpoints is about 44x107. The airfoil grid rotates with the
above specified angle of attack condition while the other two grids remain stationary.

Table 1 gives a summary of the measured parallel performance for this moving case on the
IBM SP2 and SP. The statistics shown are the average Megaflop/sec/node rate measured using

Table 1. Performance of 2D Oscillating Airfoil Case

Avg. Mflops/ Parallel % Time in
Average Node Speedup DCF3D

Nodes Gridpoints/node | SP2 SP Sp2 | SP | SP2 | SP
6 10088 23.1 313 1 1 10% 7%

9 6726 183 246 145 143 11% 8%
12 5044 186 27.7 207 223 14% 11%
18 3363 146 219 283 311 15% 11%
24 2522 11.3 156 3.65 375 14% 11%

IBM’s PHPM (Parallel Hardware Performance Monitor) software on the SP2, the measured paral-
lel speedup, and the percentage of time spent in the connectivity solution. Because the SP does
not have PHPM available, its Mflop rate is derived by comparing the solution time to that of the

9 ’FW@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) CQMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

SP2. Figure 5 shows the overall parallel speedup and a breakdown of the parallel speedup in the
flow solution (OVERFLOW) and connectivity (DCF3D) routines. The statistics shown do not
include effects such as preprocessing steps or I/0 costs.

IBM SP2 IBM SP
4 ' ‘ . : : :
OVERFLOW pr—
DCF3D B
o Combined : =%
= -
i° 5
[
& &
) 3
s L| 3
g ° 8
g 518 21 24 7575 37—«
Processors Processors

Figure 5. Parallel speedup - 2D oscillating airfoil

The case shows good parallel speedups overall and, although the parallel speedup of DCF3D
is significantly lower than that of OVERFLOW, it uses a relatively small percentage of the total
solution time (i.e. less than 15%) and remains roughly the same for all processor partitions. The
Megaflop rate per node drops off significantly but this is most likely a consequence of the low
number of gridpoints for this small problem on large numbers of processors. Some degree of
super scalar speedups are observed on both machines but most-notably on the SP. These super
scalar results are most-likely caused by an improvement in the cache performance as a result of
the shorter loop lengths in the 12 processor case.

The dynamic load balance parameter f, is set to o for this case, which means the dynamic rou-

tine is effectively ignored and no effort is made to rebalance the solution based on the connectivity
performance. Because of the low percentage of time spent in the connectivity solution, any effort
to rebalance the solution to improve the performance of the connectivity solution causes the opti-
mal performance for the flow solver to be lost and the performance becomes worse overall.

A scaleup study is performed with this case to determine how well the method can be scaled
for larger problem sizes. The original grids are coarsened by removing every other gridpoint so
that the number of gridpoints is reduced by a factor of four. The original grids are also refined by
adding a gridpoint between the others so the number of gridpoints is increased by a factor of four.
The three resulting problem sizes of the coarsened, original, and refined cases are 15.3K, 63.6K,
and 240.4K gridpoints, respectively. The IGBPs/gridpoints ratio stays roughly the same for all

three cases at 44x1073. The coarsened case is run on 3 processors, the original case on 12 proces-
sors, and the refined case on 48 processors. Table 2 shows results of the scaling study. Prepro-
cessing and I/O costs were not included in determination of the statistics.

10 w@

e 2
Proceedings of the ACM/IEEE SC97 Conference (SC'97) @gMPHTER

0-89791-985-8/97 $ 17.00 © 1997 IEEE OQCIETY

Table 2. 2D Oscillating Airfoil Scaling Study

Time/ % Time in
Average Timestep(sec) DCF3D
Case Gridpoints/node | SP2 Sp Sp2 | SP
Coarsened - 3 nodes 5117 0255 0175 10% 8%
Original - 12 nodes 5299 0285 0.195 14% 11%
Refined - 48 nodes 5008 0365 0231 23% 17%

The scaleup study indicates that there is a noticeable drop in efficiency as we move from the
smallest to the largest case. This is due to an increase in communication costs across the larger
numbers of processors and to a relative lack of scalability in DCF3D. The lower scalability in the
connectivity solution is indicated by the percentage of time spent in DCF3D which increases by
about 2.2 times from the coarsened 3 node case to the refined 48 node case. This appears to indi-

cate that the connectivity solution may become a more dominant parallel cost for larger problems
with many gridpoints.

4.2 Descending Delta Wing

This case was originally studied with the baseline serial version of the software by Chawla
and Van Dalsem [14]. The case consists of four grids, shown in Fig. 6, that have a composite total
of about 1 million gridpoints with a IGBPs/gridpoints ratio of 33x1073. Three curvilinear grids
make up the delta wing and pipe jet, and the fourth is a Cartesian background grid. The three cur-
vilinear grids move at a relatively slow speed of M =0.064 with respect to the background grid.

The viscous terms are active in all directions on all four grids and no turbulence models are used.
a Tl]

'3

)

Tl dd

7/

‘fIIIIIIIIIIIIIIlI

ITIEyNN NN

Figure 6. Descending delta-wing grids. |

Table 3 shows the parallel performance statistics of this case with static load balancing on the
SP2 and SP. The method appears to scale well for this problem, showing good parallel speedup
with relatively small dropoff in the Megaflop/sec/processor with the increasing number of proces-
sors. The percentage of time spent in DCF3D grows larger with increasing numbers of processors

11
Proceedings of the ACM/IEEE SC97 Conference (SC'97) CGMFUTER
0-89791-985-8/97 $ 17.00 © 1997 {EEE SOCIETY

but remains a relatively low percentage of the time overall. The overall parallel speedup is plotted

in Fig. 7 along with a breakdown in the speedup of the flow solution and connectivity solution.

Overall, the parallel performance for this case is quite good. Although the connectivity solu-
tion shows worst parallel speedup than the flow solver, it comprises a small percentage of the total
cost (less than 15%) so the performance is degraded only slightly. Because the connectivity costs

represented a small fraction, there is no performance gain by use of the dynamic load balance

scheme.
Table 3. Performance of Descending Delta Wing Case
Avg. Mflops/ Parallel % Time in
Average Node Speedup DCF3D
Nodes Gridpoints/node SP2 SP SP2 SP | SP2 SP
7 140480 27.3 438 1 | 9% 6%
12 81947 270 518 172 200 10% 9%
26 37822 263 51.1 337 388 12% 11%
55 17879 235 453 631 7.08 15% 13%
IBM SP2 IBM SP
8 v . y , . . r v . v r 8 T T T
OVERFLOW P Ideal 7}
r DCF3D e
s 6| Combined §_ 6l
3 g sl
&°| @
— [L
34 T
£ 3} & 3f
2t 2f
1l 7111519252731 36 39 43 47 51 55
Processors Processors

Figure 7. Parallel speedup - descending delta-wing case

4.3 Finned-Store Separation from Wing/Pylon

The third test case investigates the performance of the method for computing the unsteady

viscous flow in a Mach 1.6 store separation event. The case was studied previously by Meakin [4]
with vectorized versions of the software. A total of 16 grids are used (Fig. 8) with ten curvilinear
grids defining the finned store, three curvilinear grids defining the wing/pylon configuration, and
three background Cartesian grids around the store. A composite total of 0.81 million gridpoints

are used and the IGBPs/gridpoints ratio is about 66x1073. Viscous terms are active in all curvilin-
ear grids with a Baldwin-Lomax turbulence model. The three Cartesian background grids are all

12

Proceedings of the ACM/IEEE SC@7 Conference (SC'97)
0-89791-985-8/97 $ 17.00 © 1997 IEEE

OCIET

COMPUTE
SOCIETY

1

R

Figure 8. Grids for Finned-Store Separation Problem

1=5.00

Figure 9. Computed Mach contours (left) and surface pressure (right)

13
Hgiste
Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

inviscid. The motion of the store is specified in this case rather than computed from the aerody-
namic forces on the body. However, the free motion can be computed with negligible change in
the parallel performance of the code. Figure 9 shows the computed solution through 1000
timesteps.

Table 4 gives the measured performance statistics for this calculation on the SP2 and the SP
using static load balancing. The time spent in DCF3D is noticably higher for this case than either
of the previous two cases because the ratio of intergrid boundary points to gridpoints is larger in
this grid system. The average Megaflop/processor rate is also slower than the descending delta-
wing case, for two reasons. First, the problem size is smaller so the number of gridpoints per pro-
cessor is less. Second, the lack of load balance in the connectivity solution results in a relatively
low ELOP count so the larger proportion of time spent in this routine leads to a drop in the overall

Megaflops/sec rate.
Table 4. Performance for Finned-Store Separation Case
Avg. Mflops/ Parallel % Time in
Average Node Speedup DCF3D
Nodes Gridpoints/node Sp2 SP | SpP2 SP Sp2 | SP
16 50462 103 164 1 1 17% 15%
18 44855 150 233 165 161 28% 21%
22 36699 182 292 254 248 24% 19%
28 28836 192 326 352 374 32% 28%
35 23068 17.5 297 411 438 28% 23%
42 19223 167 295 517 570 33% 29%
52 15526 165 284 657 708 34% 29%
61 13236 145 254 756 833 32% 28%
IBM SP2 IBM SP
10 ; 10 T r

OVERFLOW cosses
DCF3D ——
Combined

Parallel Speedup
AN W R OO N ©
AW OO N O ©

16 22 28 34 40 46 52 58 16 22 28 34 40 46 52 58
Processors Processors

Figure 10. Parallel speedup of finned-store separation case with static load balancing

14

Proceedings of the ACM/IEEE SC97 Conference (SC'97)
0-89791-985-8/97 $ 17.00 © 1997 IEEE

The Mflop/processor rate remains relatively constant between 18 and 52 processors, however,
indicating a relatively good degree of scalability. The execution rate improves in the range of 16
to 28 processors because the problem is achieving a better degree of static load balance by
increasing the number of processors applied to the problem. The overall parallel speedup along
with a breakdown in the speedup of OVERFLOW and DCF3D is shown in Fig. 10.

Table 5. Parallel performance of DCF3D with dynamic load balance
scheme applied to wing/pylon/finned-store problem.

% Time in DCF3D DCF3D Speedup
Nodes Dynamic | Static Dynamic | Static
16 17% 17% 1 1
18 17% 28% 1.31 1.00
28 22% 32% 2.64 1.87
52 24% 34% 4.10 3.28
Dynamic Static
9 T T T T i 9
81 [OVERFLOW s 8T
71 | DCF3D] 71
a Combined
Z6f 6}
8|
& 5T
B4} 4t
g3l 3t
0.
2t ot
1} 1 41
635 28 34 40 46 52 > 38 34 40 46 52
SP2 Processors SP2 Processors

Figure 11. Parallel speedup using static and dynamic load balancing schemes with
finned-store separation case.

The IGBPs/gridpoints ratio for the wing/pylon/finned-store case is 1.5-2 times larger than
either of the previous two problems investigated and the connectivity solution consequently repre-
sents a higher proportion of the total solution costs. It is therefore a good candidate to evaluate
the performance of the dynamic load balance scheme. Table 5 shows the performance statistics of
DCE3D on various processor partitions of the SP2 using a connectivity load balance factor of
f,=5. The maximum degree of load imbalance in the connectivity solution for this problem was

found to be around f{p)=7, so the value of f,=5 is chosen with the goal of reducing this imbalance

somewhat without reducing the load balance in the connectivity solution significantly. Itis clear
from the result in Table 5 that the dynamic scheme is effective at improving the parallel speedup
of DCF3D. This translates to a better degree of scaling in the connectivity solution. When

15

Proceedings of the ACM/IEEE SC97 Conference (SC'97) Uf%ﬁ

SOMPUT:
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIET

increasing the number of processors from 16 to 52, the proportion of time spent in DCF3D
increases by a factor of 2.0 with the static load balance scheme. With the dynamic scheme, the
proportion of time increases by a factor of 1.35.

Unfortunately, the improvement in parallel performance in DCF3D comes at the cost of a
reduction in parallel performance of OVERFLOW (Fig. 11). OVERFLOW constitutes a more sig-
nificant proportion of the total solution cost, greater than or equal to two-thirds of the total all the
processor partitions tested, so the reduction in its parallel performance outweighs the improve-
ment in performance in DCF3D and the overall parallel speedup is diminished for this case.
Depending on the number of processors, the combined parallel performance with the static
scheme is about 15-25% better than the combined performance with the dynamic scheme. Thus,
the static scheme is most effective at achieving optimal parallel performance for this problem.

We conclude this section with a remark about the effectiveness of parallel processing at reduc-
ing the turnaround time for moving-body overset grid calculations. Table 6 gives the wallclock
run time for the wing/pylon/finned-store case on the SP2 and SP compared with the run time on a
single processor Cray YMP 864 (times reported in [4]). The YMP has a clock rate of 4.2 ns and
peak flop rate of 333 Mflops (by comparison, the Cray C90 has a clock rate of 6.0 ns and a peak
flop rate of 1 Gflop, so the times recorded on the YMP are probably two to three times slower than
what achieved on a C90 head). The overall wallclock time speedup and the average speedup per
node are shown in “YMP units”, which designates one unit of time on the single processor of the
Cray YMP. Speedups in the run time on the order of one to two orders of magnitude are observed
for these modern multi-processor supercomputers, and the per node performance is a significant
fraction of the performance of the YMP across a wide range of processors.

Table 6. Wallclock speedup in run time (compared to Cray YMP)

Run Time Speedup (in YMP Units®)
Overall Per Node
nodes Sp2 SP SP2 SP
18 94 18.5 0.52 1.03
28 19.9 33.8 0.71 1.21
42 29.2 51.5 0.70 1.23
61 43.0 75.3 0.70 1.23

a. Speedup over YMP where 1 YMP unit = 1 unit of time on
single processor Cray YMP/864.

5.0 Future Work

The prediction accuracy of calculations about geometrically complex shapes and evolving
unsteady flowfields in moving-grid problems can be improved with solution adaption. A class of
solution adaption methods based on nested overset Cartesian grids [15,16] have demonstrated
favorable results. Use of Cartesian grids offers several advantages over traditional structured cur-

vlinear and unstructured grids. Uniformly-spaced Cartesian grids can be completely defined via
knowledge of only their bounding box and spacing, constituting only seven parameters per grid,

16 w@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

much lower than traditional methods that require the coordinates (three terms) and the associated
metrics (13 terms) for each gridpoint. The connectivity solution with Cartesian grids can be
determined very quickly because costly donor searches are avoided. Cartesian grids retain all of
the advantages typically associated with unstructured grids, namely low grid generation costs and
ability to adapt to the solution, but they also can utilize the large class of efficient implicit solution
methods designed for structured grids, which require much less storage and better vectorized and
RISC-based processor performance than unstructured-grid solvers. The main restriction faced by
Cartesian solvers, which tends to also be faced by unstructured methods, is the inability to resolve
fine-scale viscous effects in the near-body regions of the flowfield.

Meakin [17,18] has introduced a novel solution adaption scheme based on structured overset
Cartesian grids that incorporates a pure Chimera approach in the near-body region to resolve the
viscous fine-scale effects. Curvilinear overset grids are used in the region near the body and the
off-body position of the domain is automatically partitioned into a system of Cartesian back-
ground grids of variable levels of refinement. Initially, the level of refinement is based on proxim-
ity to the near-body curvilinear grids. The off-body domain is then automatically repartitioned
during adaption in response to body motion and estimates of solution error, facilitating both
refinement and coarsening. Adaption is designed to maintain solution fidelity in the off-body
portion of the domain at the same level realizable in the near-body grid systems. Figure 12 shows
the near-body curvilinear grids with the boundaries of the a) default off-body Cartesian set of
grids and b) the off-body Cartesian set of grids after several refinement steps for the X-38 vehicle
(Crew Return Vehicle). The flow solution carried out for this case is shown in Figure 12 c.

‘Initial near-body

grid system
b) Refined system of
Cartesian off-body grids
c¢) Solution
with refined
grid system

Figure 12. Adaptive overset grid scheme applied to X-38 vehicle

The adaptive scheme is being implemented in parallel through an entirely coarse-grain strat-
egy. Unlike the OVERFLOW-D1 algorithm which is suited for Chimera problems with a rela-
tively small number of grids, the solution adaption scheme generates very large numbers of

17

Bt
Proceedings of the ACM/IEEE SC97 Conference (SC'97) @@Mp

0-89791-985-8/97 $ 17.00 © 1997 IEEE

TER

SOCIETY

Proceedings of the ACM/IEEE SC97 Conference (SC'97)
0-89791-985-8/97 $ 17.00 © 1997 IEEE

smaller Cartesian grids (generally hundreds to thousands) and therefore offers a high level of
coarse-grain parallelism. A load balancing scheme, described in Algorithm 3, gathers grids into
groups and assigns each group to a node in the parallel platform. The load balance approach
insures that computational work (i.e. gridpoints) is distributed evenly among the groups and also
maintains a degree of locality among the members of each group to maximize the level of intra-
group connectivity and, hence, lower communication costs. Each group is assigned to a different
node in the parallel architecture and MPI subroutine calls are used to pass overlapping grid infor-

mation for grids which lie at the edge of the group.

Algorithm 3: Grouping Strategy
~Loop through N grids (largest-to-smallest), 2
Toop through M groups (smallest-to-largest), 1
IF group m is empty,

Assign grid n to group m
Else,

Check connectivity array to see if grid n is

connected to any other members of group m.
If so, assign grid n to group m.

nd loop on M

If grid n is not connected to any members of

the groups as currently constituted, assign
grid n to the smallest of the M groups

LEnd loop on N

In addition to the parallelism between the groups, there is the potential for further paralleliza-
tion at the intra-group level. The multiple grids at each group can be updated simultaneously so
the computations within the group can be parallelized. This will be effective for parallel plat-
forms consisting of clusters of shared-memory processors.

The approach also allows latency hiding strategies to be employed. By structuring the compu-
tations to begin on the grids which lie at the interior of the group, the data communicated at the
group borders can be performed asynchronously, effectively overlapping communication with
computation.

The two most challenging parts of the new overset solution adaption scheme to implement
efficiently in parallel are the adaption step and the connectivity solution. Each adaption step
requires interpolation of information on the coarse systems to the refined grids as well as re-distri-
bution of data after the adapt cycle. Efficient techniques for parallelizing this step have been
introduced in other work [19] and the new MPI_SPAWN function, which allows new parallel pro-
cesses to be spawned from an existing process (scheduled to be included in the MPI-2 [20]
release), could be an effective tool in the parallel implementation of the adaption cycle. The bulk
of the connectivity solution can be performed at very low cost because no donor searches are

18

COMPUTER
STy

required when donor elements reside in Cartesian grid components. Points which require a tradi-
tional domain connectivity solution will be performed with a parallel version of the DCF3D soft-
ware adopted from OVERFLOW-D1. The lessons learned from parallelizing the connectivity
solution will be useful for efficient parallelization of this step. Since the vast majority of the inter-
polation donors will exist in Cartesian grid components in this type of discretization, the approach
should scale well.

6.0 Concluding Remarks

This paper investigates the parallel performance of moving-body Chimera structured overset
grid CFD calculations for computations of the unsteady viscous aerodynamics about multi-com-
ponent bodies with relative motion between component parts. The predominant costs associated
with these calculations are computation of the fluid flow equations and re-establishing domain
connectivity after grid movement. A two-part static-dynamic load balancing scheme is intro-
duced in which the static part optimizes the load balance of the flow solution and the dynamic part
repartitions, if desired, in an effort to improve load balance in the connectivity solution. Algo-
rithm performance is investigated on the IBM SP2 and IBM SP.

The static scheme alone provides the best parallel performance for the flow solution but gives
rather poor parallel performance in the connectivity solution. The dynamic scheme improves the
performance of the connectivity solution but does so at the expense of the flow solver, which
yields lower parallel performance with the repartitioning. Thus, some tradeoff is necessary. In
the problems tested, for which the flow solver was the dominant cost (comprising 67-90% of the
total), the static scheme alone demonstrates the best overall performance. The dynamic scheme is
effective at improving the parallel performance of the connectivity solution but its cost to the flow
solver outweighs its benefits to the connectivity solution and the overall parallel performance is
reduced. The dynamic scheme may, however, prove to be effective in cases that are dominated by
connectivity costs, where the flow solution makes up a less significant fraction of the total (e.g.
Euler calculations).

One conclusion drawn from this work is that the flow solution and connectivity solution
require fundamentally different partitions for load balancing and any one choice is a compromise.
The use of a dynamic scheme was proposed to allow some degree of tradeoff in the compromise
but, while it may ultimately prove successful for some cases, the compromise strategy will never
scale to very large numbers of processors (i.e. greater than 100) because of the fundamental dif-
ference required in the partitioning. Some form of inter-leaving of the flow solver costs and con-
nectivity costs, with optimal partitions in both, is viewed to be the most successful approach for
machines with very large numbers of processors.

Finally, parallel implementation of a new solution adaption scheme based on overset cartesian
grids is discussed. The scheme offers multiple levels of coarse-grain parallelism that can be
exploited on a variety of parallel platforms.

Acknowledgments

This work was performed as part of the DoD Common HPC Software Support Initiative
(CHSSI) funded through NASA contract number NAS2-14109, Task 23. Time on the IBM SP2

19

ity
Proceedings of the ACM/IEEE SC97 Conference (SC'97) C OMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

was provided by the NASA HPCCP Computational Aerosciences Project. Time on the IBM SP
was provided by the Major Shared Resource Center at the U.S. Army Corps of Engineers Water-
ways Experiment Station (CEWES). The authors wish to acknowledge Eric Barszcz and Dr. Sis-
era Weeratunga for their assistance with the parallel OVERFLOW and DCF3D. The authors
gratefully acknowledge the suggestions of Dr. William Chan, Dr. Roger Strawn, and Dr. Chriso-
pher Atwood throughout the course of this work. Special thanks to Messrs. Reynoldo Gomez and
James Greathouse of NASA Johnson Space Center for providing the grids used for the X-38 vehi-
cle described in section 5.

References

[1] Lohner, R., “Adaptive Remeshing for Transient Problems,” Comp. Meth. Appl. Mech. Eng.,
Vol. 75, 1989, pp. 195-214.

[2] Steger, J.L., Dougherty, F.C., and Benek, J.A., “A Chimera Grid Scheme,” Advances in Grid
Generation, K.N. Ghia and U. Ghia, eds., ASME FED Vol. 5, June 1983.

[3] Meakin, R., and Suhs, N., “Unsteady Aerodynamic Simulation of Multiple Bodies in Relative
Motion,” AIAA 89-1996, Preseted at the 9th AIAA Computational Fluid Dynamics Confer-
ence, Buffalo, NY, June 1989.

[4] Meakin, R.L., “Computations of the Unsteady Flow About a Generic Wing/Pylon/Finned-
Store Configuration,” AIAA Paper AIAA-92-4568, Presented at the AIAA Atmospheric
Flight Mechanics Conference, Hilton Head Island, NC, Aug. 1992.

[5] Meakin, R., “Unsteady Simulation of the Viscous Flow about a V-22 Rotor and Wing in
Hover,” AIAA 95-3463, Presented at the AIAA Atmospheric Flight Mechanics Conference,
Baltimore, MD, Aug. 1995.

[6] Atwood, C.A., and Smith, M.H., “Nonlinear Fluid Computations in a Distributed Environ-
ment,” AIAA 95-0224, Presented at the 33rd AIAA Aerosciences Meeting, Jan. 1995.

[7]1 Brown, D., Chesshire, G., Henshaw, W., and Quinlan, D., “Overture: An Object-Oriented
Software System for Solving Partial Differential Equations in Serial and Parallel Environ-
ments,” LA-UR-97-335, Eighth SIAM Conference on Parallel Processing for Scientific Com-
puting, Minneapolis, MN, March 14-17, 1997.

[8] Ryan, J.S., and Weeratunga, S., “Parallel Computation of 3D Navier-Stokes Flowfields for
Supersonic Vehicles,” ATAA Paper 93-0064, Jan. 1993.

[9] Weeratunga, S.K., Barszcz, E., and Chawla, K., “Moving Body Overset Grid Applications on
Distributed Memory MIMD Computers,” AIAA-95-1751-CP, 1995.

[10] Barszcz, E., Weeratunga, S., and Meakin, R., “Dynamic Overset Grid Communication on
Distributed Memory Parallel Processors,” AIAA Paper AIAA-93-3311, July 1993.

[11] K.J. Renze, P.G. Buning, and R.G. Rajagopalan, “A Comparative Study of Turbulence Mod-
els for Overset Grids,” AIAA-92-0437, AIAA 30th Aerospace Sciences Meeting, Reno, NV,
Jan. 6-9, 1992.

20 V@

Proceedings of the ACM/IEEE SC97 Conference (SC'97) COMPUTER
0-89791-985-8/97 $ 17.00 © 1997 IEEE SOCIETY

Proceedings of the ACM/IEEE SC97 Conference (SC’'97)
0-89791-985-8/97 § 17.00 © 1997 |EEE

[12] Meakin, R.L., “A New Method for Establishing Inter-grid Communication Among Systems
of Overset Grids,” AIAA Paper AIAA-91-1586, Presented at the 10th AIAA Computational
Fluid Dynamics Conference, Honolulu, Hawaii, June 1991.

[13] MPI: A Message-Passing Interface Standard, Published by the University of Tennessee,
Knoxville, TN, 1995. http://WWW.ERC.MsState. Edu/mpi

[14] Chawla, K., and Van Dalsem, W.R., “Numerical Simulation of a Powered-Lift Landing,”
72nd Fluid Dynamics Panel Meeting and Symposium on Computational and Experimental
Assessment of Jets in Cross Flow, Winchester, U.K., April 19-23, 1993. AGARD Conference
Proceedings CP-534, pp. 32.1-32.10.

[15] Berger, M., and Oliger, J., “Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations”, Journal of Computational Physics, Vol. 53, 1984, pp. 484-512.

[16] Berger, M. and LeVeque, R., “A Rotated Difference Scheme for Cartesian Grids in Complex
Geometries,” AIAA Paper 91-1602, AIAA 10th CFD Conference, 1991.

[17] Meakin, R.L., “An Efficient Means of Adaptive Refinement within Systems of Overset
Grids,” AIAA-95-1722-CP, June 1995, pp. 844-857.

[18] Meakin, R.L., “On Adaptive Refinement and Overset Structured Grids,” AIAA-97-1858,
Proceedings of the AIAA 13th CFD Conference, June 1997, pp. 236-249.

[19] Quinlan, D., “AMR++: A Design for Parallel Object-Oriented Adaptive Mesh Refinement”,
Published in Proceedings of the IMA Workshop on Structured Adaptive Mesh Refinement,
Minneapolis, MN, March 1997.

[20] MPI-2: Extensions to the Message Passing Interface, Published by the University of Ten-
nesse, Knoxville, TN, 1996. http://www.mcs.anl.gov/mpi/mpi2/mpi2.html

21

COMPUTER

SOCIETY

